STATE OF NEW HAMPSHIRE PUBLIC UTILITIES COMMISSION

DOCKET NO. DE 20-170

IN THE MATTER OF: ELECTRIC DISTRIBUTION UTILITIES ELECTRIC VEHICLE TIME OF USE RATES

SUPPLEMENTAL TESTIMONY

OF

SANEM I. SERGICI

February 4, 2022

Docket No. DE 20-170 Exhibit 8B

1	Q.	Dr. Sergici, please restate in substance the supplemental testimony you provided during
2		the hearing in this proceeding held on January 25, 2022.
3	A.	Certainly. In my direct testimony, I recommended that all three utilities in New Hampshire
4		adopt an electric vehicle (EV) time of use (TOU) rate alternative to current demand charge-
5		based rates for high-demand draw commercial EV charging applications. My
6		recommendation included a 100% reduction in demand charges and the recovery of
7		generation, transmission, and distribution revenue requirements (net of customer charges)
8		through TOU rates. I designed illustrative TOU rates that are consistent with marginal cost
9		principles, minimize cost shifts, and have the potential to avoid future capacity costs by
10		encouraging customers to shift load from peak to off-peak periods.
11		
12		When developing the illustrative rates described in my direct testimony, I had to make
13		several assumptions due to the limited number of separately-metered commercial class
14		charging stations currently deployed, and the lack of information relating to usage patterns
15		for those charging stations. One of those assumptions is the "charging station utilization
16		rate," which is defined as the actual usage, divided by the maximum possible usage based on
17		the installed capacity. I assumed a 15% utilization rate to develop TOU rates that would lead
18		to the same amount of revenue collection as the analogous non-EV commercial customer
19		class based on a dataset provided by Eversource. ^{1,2} However, after further inquiry during a
20		subsequent technical session, I discovered that the previous utilization rate we relied upon
21		was based on billed demand, instead of the installed capacity of the chargers at the station.

2

¹ Exhibit 13 at Bates 7-10.

 $^{^2}$ I used data from analogous commercial customer rate classes: G1 and G2 for Unitil and Liberty, and Rate GV for Eversource.

Docket No. DE 20-170 Exhibit 8B

3

1	This distinction was identified and corrected in a follow-up data request, which is available at
2	Exhibit 13, Bates 34, with actual usage information detailed at Bates 36-39. Those sheets
3	contain two percentage columns showing the billed demand utilization and installed capacity
4	utilization and show that separately-metered EV charging customers generally had an
5	installed capacity utilization of between 1% and 5%.
6	
7	This new information had two implications: (1) the illustrative rates in my testimony were
8	only recovering similar revenues to those that would be recovered through the analogous
9	class rates, under the 15% utilization rate assumption; and (2) the illustrative rates would
10	under-recover costs for stations with a lower utilization rate, such as those with utilization
11	rates less than 5%.
12	
13	With this new information, I performed bill impact analyses for all three utilities, using
14	different utilization rates. My analysis showed that this under-recovery situation could be
15	remedied by leaving all other assumptions in my modeling the same, and leaving the
16	resulting volumetric rates the same, but also maintaining a demand charge at half of the
17	demand charge rate of the comparable commercial customer class. This is in fact the rate
18	design adopted for separately-metered, commercial class EV charging stations under the
19	settlement agreement.
20	
21	Table 1 below presents the monthly bills for three hypothetical EV charging facilities with
22	5%, 10%, and 19% utilization rates under the original rates (G1 for Unitil and Liberty), TOU
23	rate only, and TOU rate plus half of the demand charge of the comparable commercial

4

1 customer class. This analysis assumes an annual consumption allocation of 50% during the

- 2 peak period, 30% during the mid-peak period, and 20% during the off-peak period, before
- 3 any load-shifting.
- 4

5 Table 1: Monthly Bills for Representative EV Charging Facilities

Monthly Bill	Unit	Facility 1	Facility 2	Facility 3
Utilization rate		5%	10%	19%
Unitil G1				
Original G1	\$/month	\$1,223	\$1,396	\$2,767
DOE Rate - Original TOU	\$/month	\$722	\$1,260	\$3,644
DOE Rate - Original TOU and 1/2Demand Charge	\$/month	\$1,178	\$1,716	\$4,404
Liberty G1				
Original G1	\$/month	\$2,043	\$2,523	\$5,381
DOE Rate - Original TOU	\$/month	\$1,459	\$2,406	\$6 <i>,</i> 609
DOE Rate - Original TOU and 1/2Demand Charge	\$/month	\$2 <i>,</i> 005	\$2,952	\$7,519

7

6

8 Before any load shifting behavior takes place, the TOU rate plus half of the demand charge 9 option ensures recovery of approximately the same amount of revenue that would have been 10 recovered under the original rate on a monthly basis. For example, for Facility 1 with a 11 utilization rate of 5%, the original Unitil G1 rate leads to a monthly bill of \$1,223. The TOU 12 rate-only option leads to a monthly bill of \$772, which under-recovers the required revenue. 13 TOU rate plus half of the demand charge option leads to a monthly bill of \$1,117, which 14 approaches the original revenue. A similar pattern is observed for the Liberty G1 rates 15 shown.

16

1 In conclusion, for the design of the separately-metered high-demand draw charging station 2 EV TOU rates, I recommend that half of the demand charges of the analogous commercial 3 customer rate class be maintained and that the rest of the revenue requirement be collected 4 through the TOU rates, based on the methods described in my direct testimony. That rate 5 structure will send efficient price signals to encourage EV charging during the times of the 6 day when it costs less and will mitigate future capacity needs, thereby resulting in cost 7 savings for all ratepayers. It will also ensure revenue recovery from low-utilization charging 8 stations and reduce the extent of potential cost shifts. 9 Q. Does that conclude your supplemental testimony?

10 A. Yes, it does.